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low-temperature magnetic properties of doped manganites
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Abstract. Exact calculations of energy eigenstates of the double-exchange (DE) model are
carried out for rings withN sites andNe electrons for a variety of evenN and oddNe values,
the ground states being ferromagnetic. The shapes of the spin-wave spectra (energy versus
wave vector) differ markedly from that of the Heisenberg model for general concentration
x = 1− Ne/N and localized spinS, as expected from earlier work, in contrast to a recent
theory. But there is a range ofx, including 0.3, for which the dispersion shapes are close
to Heisenberg for realisticS. This suggests that the Heisenberg spectrum observed recently
in La0.7Pb0.3MnO3 might still be explained by the DE model. Also, interesting asymptotic
behaviour of the dispersion width for largeS, largeN , is clarified.

The remarkable metal→ insulator and ferromagnetic→ paramagnetic transitions found
to occur [1] at the same temperatureTc in the doped rare-earth perovskite manganites,
La1−xMxMnO3, and studied theoretically [2–8] long ago, have been shown great interest in
recent years [9–22]. Until very recently, the theoretical basis [3–6] for understanding the
observations has been through approximate treatments of the so-called [2] double-exchange
(DE) model, which is the Kondo lattice model with ferromagnetic intra-atomic exchangeJ

in the limit of infinite J . Although this model was recently called into question [15, 16] for
temperatures near and aboveTc, its validity for these materials at lowT has not yet been
questioned in the literature.

Very recently, a surprising low-T result appeared, namely the observation, via inelastic
neutron scattering, that the spin-wave dispersion throughout the Brillouin zone is described
by the Heisenberg model with nearest-neighbour exchange (for La0.7Pb0.3MnO3) [17]. This
is surprising because in the DE model the dependence of the energy on the relative
orientation of the localized spins differs markedly from that for Heisenberg spins: in a
mean-field sense, the DE model gives energy∼ | cos(θ/2)|, as compared to cosθ for the
Heisenberg model, whereθ is the angle between two spins [3, 4].

Nevertheless, an approximate spin-wave theory recently appeared which found the
dispersion to be precisely nearest-neighbour Heisenberg in the infinite-J limit, independent
of the concentrationx and the localized-spin quantum numberS [21]. Thus this theory
seemed to explain the surprising experimental result [17]. Unfortunately, this theoretical
picture is a poor approximation to the spectrum of the actual double-exchange model, as
shown by our exact calculations, described below. Also, there is work of another group
[19] which also involves exact calculations, where the spin-wave dispersion was found to
be decidedly non-Heisenberg, a result emphasized by these authors [19].
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The question therefore remains, can one reconcile this non-Heisenberg aspect of the
DE model with the neutron scattering experiments? We suggest the answer is yes. We
have carried out exact calculations onN -site,Ne-electron rings. Although general values of
concentrationx = 1−Ne/N andS yield verynon-Heisenberg spin-wave dispersion shapes,
there is, for realisticS (=3/2), a range ofx, including 0.1< x < 0.5 (poor in holes in the
half-filled band, which is the experimental region), where the DE model predicts dispersion-
curve shapes close to Heisenberg [23]. We also find that for largeJ the spin-wave dispersion
approaches Furukawa’s result [21] (Heisenberg shape) in the limitS →∞.

We study the following model, with HamiltonianH . The conduction electrons move
in a tight-binding band with one orbital per site (this standardly models the Mn eg states),
the hopping integral beingt . These interact with localized spins, one at each site, of spin
S, via Hund’s rule or intratomic exchange of strengthJ ; the localized spin comes from the
three electrons in the Mn t2g states. There is also on-site Coulomb interaction between the
conduction electrons, of strengthU .

The standard model of double exchange is this model in the limitJ → ∞. In this
case, double occupancy of aneg state is excluded by the exchange, so that all results are
independent ofU . The usual model for considering finiteJ is H with U = 0, see e.g. [19]
and [21]. However, because for the physical systems of interest one expectsU � J [14],
and because of relative simplicity in exact calculations, we consider onlyU →∞.

The Hamiltonian is

H = −t
∑
i,σ

(
c+iσ ci+1,σ + HC

)
− J

∑
si · Si + U

∑
ni↑ni↓. (1)

Here c+iσ (the adjacent ofciσ creates an eg electron at sitei with spin σ , niσ = c+iσ ciσ ,
s+i = c+i↑ci↓, andszi = (1/2)(ni↑ − ni↓); Si is the operator for the localized spin at sitei,
which runs from 1 toN . The number of electronsNe =

∑
niσ . H commutes with the

squareS2
T of the total spin and any Cartesian component ofST ; also, its energy spectrum

is invariant undert →−t for a bipartite lattice.
We have considered only the cases whereSzT = its maximum valueSM andSM−1. The

casesszT = Sm, with each conduction electron in a Bloch function (ferromagnetic states),
are eigenstates of (1), the lowest of which we call|F 〉, with energyEF . We have studied
the following: (i) (N,Ne) = (N, 1) and(N,N −1) for N = 4, 6, 8, 10, 12, 16, 20, 40, 60,
80; (ii) (N,Ne) = (N,N−3) for N = 4, 6, 8, 10, 12. OddNe, for which |F 〉 is the ground
state, is chosen because for evenNe the ground state is not ferromagnetic, as found in
[8]; non-ferromagnetic behaviour was also found [19] for 2D and 3D clusters with periodic
boundary conditions and certain numbers of electrons (‘open-shell cases’). Arguments in
[19] suggest that this deviation from ferromagnetism is a ‘1 inN ’ effect, a suggestion
supported by Kubo’s finding [8] that the ferromagnetic state is the ground state foropen
chains. We note that the very-long-wavelength spiral found for the non-ferromagnetic state
[8, 19] would probably be shifted to the ferromagnetic state by a small, realistic, anisotropy
(via spin–orbit interactions). For further recent discussion of the ground state problem see
[22].

We begin discussion of our results with some characteristic properties which we describe
in terms of the simple case of six sites and one electron, withS = 1/2. Here we take the
infinite-J andU limits and, of course, subtract those terms fromH . The energy eigenvalues
(minus the ground-state energyEF = −2t), all in units of t , are shown in figure 1, listed
according to wave vectork, the translational-symmetry quantum number of the eigenstates.
We note the existence of a low-lying ‘branch’ whose highest energy is a small fraction (about
1/20) of the total width of the spectrum. We also note the bunching of the eigenvalues around
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Figure 1. Energy eigenvalues measured fromEF in units of t , for one electron, six sites,
S = 1/2, J = ∞.

the free-particle values (0, 1, 3, 4). This effect is more pronounced forS = 3/2; in particular
the width of the lowest branch in this case is about 1/30 of the total width. A very similar
effect is seen for other cases, e.g., for the cases(N,Ne) = (6, 5), (10,7), (8,5) (6,1), all
with S = 3/2, the ratios (spin-wave width/total free-electron width)= 0.036, 0.025, 0.030,
0.036, respectively (the corresponding hole concentrations arex = 0.17, 0.30, 0.375, 0.83).
Thus there is a natural second ‘energy scale’ despite having only one parametert in the
Hamiltonian. This is probably the same second energy scale as found by Sarkar in a mean-
field approximation [20]. However, the bunching at the higher energies tends to smear out
for larger systems.

We studied the correlation functions, forr 6= 0, in the states of the lowest branch,

Czr =
〈
Szi S

z
i+r
〉

Ctr =
〈
S+i S

−
i+r
〉
.

(2)

One can show that

Czr = S2− 2S/N (3)

for any energy eigenstate (in this subspace) and arbitraryN . Further, this is identical to the
result for any (ferromagnetic) Bloch spin wave. The transverse spin correlation function for
a Bloch spin wave of wave vectork is given byCtr(Bloch) = (2S/N) coskr. Comparison
of this with the corresponding results in table 1, whereS = 1/2, shows that the correlation
functions in these low-lying double-exchange states and in the single-magnon Heisenberg
model states are very similar. Thus it is plausible to refer to these states in the DE model
as spin-wave states.

We also mention that in these spin-wave states the probability of separation of the
electron and the down spin shows an effective attraction fork = 0, this gradually changing
as k increases to repulsion fork = π . This spin-polaroneffect, which was also noted
independently by Zanget al [19], will be discussed in detail elsewhere.

Figure 2 shows the spin-wave energies forS = 3/2, J = 40t , and for the Heisenberg
model (solid curve), normalized to unity at the maximum (atk = π ) so as to compare the
shapesof the energy againstk relations. (The results are quite insensitive to changes in
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Table 1. Transverse correlation functionCtr for the spin-wave states characterized byk. Because
of the ring geometry,Cv4 = Cv2 andCv5 = Cv1. Results for six sites, one electron,S = 1/2 and
infinite J .

k r = 1 r = 2 r = 3

0 0.142 86 0.142 86 0.142 86
π/3 0.076 22 −0.074 39 −0.147 21
2π/3 −0.076 72 −0.069 90 0.133 81
π −0.152 52 0.135 64−0.128 19

Figure 2. Spin-wave energies forS = 3/2, J/t = 40, and for the Heisenberg model (solid
curve), normalized to unity atk = π , for N = 4, 12, 20, 40, 60, 80. Atk = π/2, all theseN -
values appear; in both cases,(N, 1), (N, N −1), the lowest energy corresponds to the smallest
N , the energy increasing withN .

J near such a large value—we have essentially the infinite-J limit.) In figure 2 the cases
(N, 1) and (N, N − 1) are shown for a subset of theN -values calculated, selected for
clarity of presentation. We notice the large deviation from Heisenberg shape (HS) for small
electron and small hole concentration (‘hole’ in our usage means hole in the half-filled band,
so x is the hole concentration). We also see asymmetry between electrons and holes (as is
consistent with the analysis of [6]): the large-N limits are similar, but not identical, and both
differ radically from HS. Most importantly, while even the largest-electron-concentration
cases shown in the(N, 1) case (N = 4, 12) deviate appreciably from HS, the largesthole
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Figure 3. Deviation of the spin-wave spectrum from that of the Heisenberg model against hole
concentrationx.

concentrations in the(N, N − 1) set (again,N = 4, 12) actuallystraddle the Heisenberg
shape, and are quite close to it. To study this behaviour in more detail, we calculated the
deviation of each (normalized) spin-wave spectrum,ε(k), from the HS, as

Dev = (2/N)
∑
k>0

[
ε(k)− εHeis(k)

]
. (4)

This is useful because in every case (each(N, Ne)), the bracketed quantity is of one sign;
also it approaches the difference in areas asN →∞. This deviation is plotted in figure 3
as a function ofx, and includes all the cases we studied as described above. The result
is remarkably smooth, suggesting that the deviation is a strong function only ofx (being
only weakly dependent onN andNe separately). This suggestion is supported by the fact
that the deviations in the two cases (12, 9) and (4, 3) with the samex (= 1/4) differ by
only about 0.001, with about the same difference for (12, 3) and (4, 1) atx = 3/4. The
deviation shows a rather broad range ofx, including the experimental range, for which the
DE and Heisenberg spectra have approximately the same shape, although for otherx the
deviation from HS is large. (The deviation atx = 1/2 (quarter-filled band) is not exactly
zero, although it appears to be.)

So there is the distinct possibility that the shape of the spin-wave dispersion in the
DE model is close to that in the Heisenberg model for the experimental situations so far
encountered. The results suggest that in other situations a non-Heisenberg shape might be
found.

We now consider the absolute values of the spin-wave excitation energies. In any
sequence(N, n) or (N, N − n), with fixed n, the width of the spectrum vanishes as
N → ∞ (x → 1 or 0). To address values ofx like the experimental values, we consider
(N, Ne) = (8, 5) and (10, 7) (x = 0.375 and 0.3). The widths of the spin-wave spectra
in these cases are 0.294t and 0.246t , respectively. The estimatet ≈ 0.2 eV (Millis et al
[15]) then gives about 0.06 and 0.05 eV for these cases—these are of the right order of
magnitude, the measured width [17] being about 0.1 eV. Given that the present calculations
are for 1D, the experimental material being 3D (cubic), this order-of-magnitude agreement
is quite satisfactory.

The results described here, although limited to finite-size 1D systems, suggest that the
DE model is appropriate to the systems that have been studied experimentally. The reason
is not that the DE model produces a spin-wave spectrum which is of the Heisenberg shape,
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Figure 4. The parametera[S, N ] againstS/N . Shown are the values forS = 1, N = 20, 40,
60, 80, 100, 200. A similar plot forS = 1/2 shows values much closer to 2/π2 (=0.202 642).
Straight-line extrapolation from the two last points (smallestS/N ) gives 0.202 59 and 0.202 62
for the S = 1 andS = 1/2 cases, respectively.

independent ofx andS, as claimed recently [21]. Rather, the spectrum in DE is in general
very non-Heisenberg, but approximates Heisenberg behaviour for some concentrations at
realisticS-values.

We looked numerically at largeS to compare with Furukawa’s results [21]. Indeed, we
found in several cases that asS increases the spin-wave spectrum approaches the Heisenberg
shape, in agreement with his result (which is to leading order in 1/S). It is interesting to
check the actual spin wave bandwidth. In 1D, his [21] formula, which takesJ →∞, (8)
gives

ωk = A1− cosk

2
(5)

with

A = 2t

NS

occ∑
q

cosq.

For (N, Ne) = (6, 1) and (8, 5), this givesA/t = 0.222 and 0.402, respectively, to be
compared with our exact results, 0.127 and 0.301, all forS = 3/2. Thus the result to
leading order in 1/S is of the correct order of magnitude, although not very accurate.

Finally we discuss the following rather curious fact. For one electron, Furukawa’s
formula gives the width of the dispersion,ωπ ≡ w = 2/NS, in units of t . We also
numerically found that for largeN , w = O(1/Nα) with α ∼= 2, which seems to be
at odds with the linear scaling in 1/N in Furukawa’s result. We then realized that a
rigorous upper bound on the excitation energy [19], namely 2[1− cos(π/N)], confirms our
finding [24]. Remembering that Furukawa’s result is supposed to be the leading term in
a 1/S expansion [21], it is clear that such an expansion cannot converge at large enough
N , and maintain consistency between these two behaviours. We guessed the following
reconciliation:w = (2/NS)/(1+ aN/S), wherea is slowly varying, and non-zero in the
limits S →∞ andN →∞ (this gives the correct asymptotic behaviour in the two regions,
S → ∞, N → ∞, and a 1/S expansion that does not converge for largeN ). From the
calculated values ofw as a function ofS, N , we calculateda(S, N). We found it to be
slowly varying: a(S, N) ≈ 0.17 for S → ∞, anda(S, N) ≈ 0.20 for N → ∞ (for the
latter we consideredN up to 200). This justifies our guess. For smallN (640) andS
(1/2 to 3/2), the bound of Zanget al [19] is quite weak. However figure 4 gives strong
numerical proof that the bound is in factexact, asymptotically, forN →∞, for which the
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bound isπ2/N2, and our formula gives 2/aN2. We found quite similar behaviour for the
case of onehole; we are in the process of comparing our numerical findings with the exact
solution for this case by Ohata [7].

We thank Dr Kenn Kybo for valuable discussions and encouragement. We also thank
Dr N Birge for a useful comment.
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